Bandpass filtering of DNA elastic modes using confinement and tension.

نویسندگان

  • Jun Lin
  • Fredrik Persson
  • Joachim Fritzsche
  • Jonas O Tegenfeldt
  • Omar A Saleh
چکیده

During a variety of biological and technological processes, biopolymers are simultaneously subject to both confinement and external forces. Although significant efforts have gone into understanding the physics of polymers that are only confined, or only under tension, little work has been done to explore the effects of the interplay of force and confinement. Here, we study the combined effects of stretching and confinement on a polymer's configurational freedom. We measure the elastic response of long double-stranded DNA molecules that are partially confined to thin, nanofabricated slits. We account for the data through a model in which the DNA's short-wavelength transverse elastic modes are cut off by applied force and the DNA's bending stiffness, whereas long-wavelength modes are cut off by confinement. Thus, we show that confinement and stretching combine to permit tunable bandpass filtering of the elastic modes of long polymers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design and Analysis of Ultra-wide Band Bandpass Filter Using Spiral Stub-Loaded Triple-Mode Resonator with a Notched Band

An ultra-wide band band-pass filter using novel spiral stub-loaded triple-mode resonator (SSLTMR) is presented. New spiral stub loaded resonator is analyzed with odd and even modes analysis for this class of BPF, achieving higher band wide and size reduction. In order to have a good response characterized, two (SSL-TMRs) and two quarter wavelength digital coupled lines are used. This new design...

متن کامل

مدلسازی عددی نفوذ پرسرعت در چندلایه های بافته شده با درنظرگیری اثرات نرخ کرنش در تخریب پیش رونده

In this research, progressive damage of woven composite materials due to high velocity impact is investigated via finite elements method. Necessity of impact analysis of composite materials using progressive damage method is detailed and available material models for this type of analysis is discussed. Governing equations at onset of failure and failure modes as well as damage growth is express...

متن کامل

Elastic wave-mode separation for VTI media

Elastic wave propagation in anisotropic media is well represented by elastic wave equations. Modeling based on elastic wave equations characterizes both kinematics and dynamics correctly. However, because P and S modes are both propagated using elastic wave equations, there is a need to separate P and S modes to obtain clean elastic images. The separation of wave modes to P and S from isotropic...

متن کامل

بررسی تأثیر محصورشدگی بتن در رفتار غیرخطی دیوارهای برشی بتن‌آرمه بالدار

Flanged shear walls are used extensively in moderate- and high-rise buildings to resist lateral loads induced by earthquakes. The seismic performance of many buildings is, therefore, closely linked to the behavior of the reinforced concrete walls. They must be carefully designed to provide not only adequate strength, but also sufficient ductility to avoid brittle failure under strong lateral lo...

متن کامل

Study of convergence confinement method curves considering pore-pressure effect

The design of underground spaces is mainly carried out using empirical, analytical, and numerical methods. The convergence confinement method (CCM) is an analytical technique that is widely utilized in analyzing the stability of underground spaces. However, the main challenge in the stability analysis is the selection of an accurate constitutive model for rock mass, and particularly, its post-f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 102 1  شماره 

صفحات  -

تاریخ انتشار 2012